Acta Crystallographica Section E Structure Reports Online

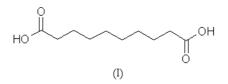
ISSN 1600-5368

Andrew D. Bond,* Marc R. Edwards and William Jones

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England

Correspondence e-mail: adb29@cam.ac.uk

Key indicators


Single-crystal X-ray study T = 180 KMean $\sigma(C-C) = 0.002 \text{ Å}$ R factor = 0.051 wR factor = 0.139 Data-to-parameter ratio = 18.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The crystal structure of octane-1,8-dicarboxylic acid (sebacic acid), $C_{10}H_{18}O_4$, has been redetermined at 180 K. The molecular units are centrosymmetric and linked *via* the ubiquitous *syn–syn* carboxylic acid dimer to form infinite chains running along the [$\overline{101}$] vector.

Received 12 December 2000 Accepted 9 January 2001 Online 30 January 2001

Comment

Crystal data for sebacic acid, (I), have been reported on four previous occasions, by Caspari (1928), Morrison & Robertson (1949) (SEBAAC01), Housty & Hospital (1966) (SEBAAC) and Haget et al. (1980) (SEBAAC02 in the Cambridge Structural Database; Allen & Kennard, 1993). All four studies essentially report the same structure in space group $P2_1/c$ with unit-cell dimensions *ca* a = 15.1, b = 5.0, c = 10.1 Å, $\beta = 133.1^{\circ}$. [Morrison & Robertson (1949) describe the structure in the non-standard setting $P2_1/a$.] The most precise cell determination (SEBAAC02) to date is derived from powder X-ray diffraction data, and atomic coordinates were not determined. We have re-examined sebacic acid at 180 K and report the structure to significantly greater precision in $P2_1/c$ with β ca 92°. The previously reported structures in $P2_1/c$ with β ca 133.1° may be transformed to our structure by the matrix (101, 010, 001) followed by an origin shift of $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ to bring an entire molecule into the unit cell.

Experimental

Sebacic acid was obtained from Aldrich and recrystallized from ethanol.

Crystal data	
$C_{10}H_{18}O_4$	$D_x = 1.239 \text{ Mg m}^{-3}$
$M_r = 202.24$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 2040
$a = 10.9197 (7) \text{\AA}$	reflections
b = 4.9876 (6) Å	$\theta = 1.0-27.5^{\circ}$
c = 9.964 (1) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 92.273 \ (6)^{\circ}$	T = 180 (2) K
V = 542.27 (9) Å ³	Plate, colourless
Z = 2	$0.23 \times 0.18 \times 0.05 \text{ mm}$

 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

Data collection

Nonius KappaCCD diffractometer Thin-slice ω and φ scans Absorption correction: multi-scan (*SORTAV*; Blessing, 1995) $T_{\min} = 0.912, T_{\max} = 0.995$ 3745 measured reflections 1241 independent reflections

Refinement

Refinement on F^2	
$R[F^2 > 2\sigma(F^2)] = 0.051$	
$wR(F^2) = 0.139$	
S = 1.05	
1241 reflections	
68 parameters	

796 reflections with $I > 2\sigma(I)$ $R_{int} = 0.054$ $\theta_{max} = 27.5^{\circ}$ $h = -11 \rightarrow 14$ $k = -5 \rightarrow 6$ $I = -12 \rightarrow 9$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0705P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.006$ $\Delta\rho_{max} = 0.22 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.18 \text{ e } \text{Å}^{-3}$

Table 1

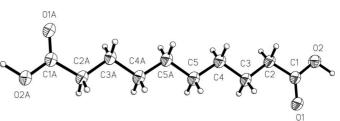
Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{O2-H1\cdots O1^i}$	1.06 (3)	1.58 (3)	2.6406 (15)	175 (2)

Symmetry code: (i) -x, 1 - y, 2 - z.

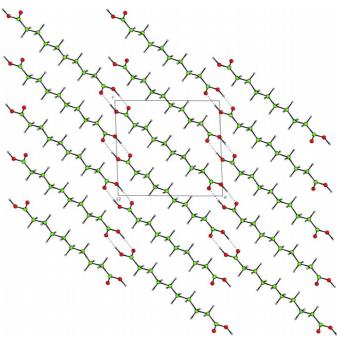
All H atoms (apart from H1) were placed geometrically and allowed to ride during subsequent refinement with an isotropic displacement parameter fixed at 1.2 times that for the C atom to which they are attached. H1 was refined without restraint.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *HKL SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *HKL DENZO* and *SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* (Sheldrick, 1993) and *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *SHELXL97*.


We thank the EPSRC for financial assistance with purchase of the CCD diffractometer.

References

- Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Caspari, W. A. (1928). J. Chem. Soc. pp. 3235-3241.


Haget, Y., Cuevas, M. A., Chanh, N. B., Bonpunt, L. & Font-Altaba, M. (1980). J. Appl. Cryst. 13, 93–95.

Housty, J. & Hospital, M. (1966). Acta Cryst. 20, 325-329.

The molecular unit of the title compound showing displacement ellipsoids at the 50% probability level.

Figure 2

Projection onto (010) showing chains of sebacic acid running along the $[\overline{1}01]$ vector.

Morrison, J. D. & Robertson, J. M. (1949). J. Chem. Soc. pp. 993-1001.

- Otwinowski Z. & Minor W. (1997). *HKL DENZO* and *SCALEPACK*. University of Texas, Southwestern Medical Center at Dallas, USA.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Sheldrick, G. M. (1993). XP. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.